Bài ghi chép Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mày phẳng lì tuy vậy song với cách thức giải cụ thể hùn học viên ôn luyện, biết phương pháp thực hiện bài bác luyện Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mày phẳng lì tuy vậy tuy vậy.
Bạn đang xem: khoảng cách từ đường thẳng đến mặt phẳng
Cách tính khoảng cách thân thuộc đường thẳng liền mạch và mặt mày phẳng lì tuy vậy song vô cùng hay
A. Phương pháp giải
Quảng cáo
Cho đường thẳng liền mạch d // (P); nhằm tính khoảng cách thân thuộc d và (P) tớ tiến hành những bước:
+ Cách 1: Chọn một điểm A bên trên d, sao mang lại khoảng cách kể từ A cho tới (P) hoàn toàn có thể được xác lập dễ dàng nhất.
+ Cách 2: Kết luận: d(d; (P)) = d(A; (P)).
B. Ví dụ minh họa
Ví dụ 1: Cho hình chóp S. ABCD sở hữu SA ⊥ (ABCD), lòng ABCD là hình thang vuông bên trên A và B; AB = a. Gọi I và J theo thứ tự là trung điểm của AB và CD. Tính khoảng cách thân thuộc đường thẳng liền mạch IJ và (SAD)
Hướng dẫn giải
Chọn C
Ta có: I và J theo thứ tự là trung điểm của AB và CD nên IJ là lối trung bình của hình thang ABCD
Ví dụ 2: Cho hình thang vuông ABCD vuông ở A và D; AD = 2a. Trên đường thẳng liền mạch vuông góc bên trên D với (ABCD) lấy điểm S với SD = a√2. Tính khỏang cơ hội thân thuộc đường thẳng liền mạch CD và (SAB).
Hướng dẫn giải
Chọn A
Vì DC // AB nên DC // (SAB)
⇒ d(DC; (SAB)) = d(D; (SAB))
Kẻ DH ⊥ SA
Do AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD)
⇒ DH ⊥ AB lại sở hữu DH ⊥ SA
⇒ DH ⊥ (SAB)
Nên d(CD; (SAB)) = DH.
Trong tam giác vuông SAD tớ có:
Quảng cáo
Ví dụ 3: Cho hình chóp O.ABC sở hữu lối cao OH = 2a/√3 . Gọi M và N theo thứ tự là trung điểm của OA và OB. Khoảng cơ hội thân thuộc đường thẳng liền mạch MN và (ABC) bằng:
Hướng dẫn giải
Chọn D
Vì M và N theo thứ tự là trung điểm của OA và OB nên
MN // AB
⇒ MN // (ABC)
Khi cơ, tớ có:
(vì M là trung điểm của OA).
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD sở hữu AB = SA = 2a . Khoảng cơ hội kể từ đường thẳng liền mạch AB cho tới (SCD) vì như thế bao nhiêu?
Hướng dẫn giải
Gọi O là gửi gắm điểm của AC và BD; gọi I và M theo thứ tự là trung điểm cạnh AB và CD. Khi đó; IM // AD //BC
Do S.ABCD là hình chóp tứ giác đều phải sở hữu O là tâm của hình vuông nên SO ⊥ (ABCD) .
+ Do tam giác SAB là đều cạnh 2a
Chọn đáp án D
C. Bài luyện vận dụng
Câu 1: Cho hình chóp S.ABCD sở hữu lòng ABCD là hình vuông vắn tâm O, cạnh a. hiểu nhị mặt mày mặt (SAB) và (SAD) nằm trong vuông góc với mặt mày phẳng lì lòng và SA = a√2. Gọi E là trung điểm AD. Khoảng cơ hội thân thuộc AB và (SOE) là
Lời giải:
+ Vì nhị mặt mày mặt (SAB) và (SAD) nằm trong vuông góc với mặt mày phẳng lì lòng .
mà (SAB) ∩ (SAD) = SA
⇒ SA ⊥ (ABCD) .
+ Do E là trung điểm của AD Lúc cơ
Tam giác ABD sở hữu EO là lối khoảng
⇒ EO // AB ⇒ AB // (SOE)
⇒ d(AB, (SOE)) = d(A; (SOE)) = AH
với H là hình chiếu của A lên SE.
Quảng cáo
Câu 2: Cho hình lập phương ABCD.A'B'C'D' sở hữu cạnh vì như thế 1 (đvdt). Khoảng cơ hội thân thuộc AA’ và (BB’D’) bằng:
Lời giải:
Chọn B
Ta có: AA’ // BB’ tuy nhiên BB’ ⊂ ( BDD’B’)
⇒ AA’ // (BDD’B’)
⇒ d( AA’; (BD’B’)) = d(A; (BDD’B’)
Gọi O là gửi gắm điểm của AC và BD
⇒ AO ⊥ (BDD’B’) (tính hóa học hình lập phương)
Câu 3: Cho hình chóp S.ABCD sở hữu SA ⊥ (ABCD) lòng ABCD là hình chữ nhật với AC = a√5 và BC = a√2. Tính khoảng cách thân thuộc (SDA) và BC?
Lời giải:
+ Ta có: BC // AD nên BC // (SAD)
⇒ d(BC; (SAD)) = d(B; SAD))
+ Ta minh chứng BA ⊥ (SAD) :
Do BA ⊥ AD (vì ABCD là hình chữ nhật)
Và BA ⊥ SA (vì SA ⊥ (ABCD))
⇒ BA ⊥ (SAD)
⇒ d(B; (SAD)) = BA
Áp dụng toan lí Pytago vô tam giác vuông ABC có:
AB2 = AC2 - BC2 = 5a2 - 2a2 = 3a2
⇒ AB = √3 a
⇒ d(CB; (SAD)) = AB = √3 a
Đáp án D
Câu 4: Cho hình chóp S.ABCD sở hữu lòng ABCD là hình chữ nhật và AB = 2a; BC = a . Các cạnh mặt mày của hình chóp đều nhau và vì như thế a√2 . Gọi E và F theo thứ tự là trung điểm của AB và CD; K là vấn đề ngẫu nhiên bên trên BC. Khoảng cơ hội thân thuộc hai tuyến phố trực tiếp EF và (SBK) là:
Xem thêm: thìn sinh năm bao nhiêu
Lời giải:
Gọi O là gửi gắm điểm của AC và BD; I là trung điểm cạnh BC
+ Do SA = SB = SC = SD và OA = OB = OC = OD nên SO ⊥ (ABCD)
+ Ta minh chứng BC ⊥ (SOI)
- Tam giác SBC cân nặng bên trên S sở hữu SI là lối trung tuyến nên bên cạnh đó là lối cao: BC ⊥ SI (1).
- Lại có: BC ⊥ SO (vì SO ⊥ (ABCD)) (2)
Từ ( 1) và ( 2) suy ra: BC ⊥ (SOI)
Mà OH ⊂ (SOI) nên BC ⊥ OH
⇒ OH ⊥ (SBC)
Do EF // BK nên EF // (SBK)
⇒ d(EF; (SBK)) = d(O; (SBK)) = OH
Chọn đáp án D.
Câu 5: Cho hình chóp S.ABC sở hữu lòng ABC là tam giác vuông bên trên B; AB= a cạnh mặt mày SA vuông góc với lòng và SA = a√2. Gọi M và N theo thứ tự là trung điểm của AB; AC. Khoảng cơ hội thân thuộc BC và (SMN) vì như thế bao nhiêu?
Lời giải:
+ Tam giác ABC sở hữu MN là lối khoảng nên MN // BC
⇒ BC // (SMN) nên :
d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))
Gọi H là hình chiếu vuông góc của A bên trên đoạn SM.
+ Ta hội chứng minh: MN ⊥ (SAM):
Chọn đáp án A
Quảng cáo
Câu 6: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh mặt mày SA = SB = SC = SD = a√2. Khoảng cách giữa nhị đường thẳng AD và (SBC) là:
Lời giải:
+ Do AD // BC nên AD // (SBC)
⇒ d (AD, (SBC)) = d(H; (SBC))
trong cơ H là trung điểm AD.
+ Gọi M là trung điểm của BC và K là hình chiếu vuông góc của H lên SM
⇒ d(H; (SBC)) = HK.
+ Diện tích tam giác SMH là:
Chọn đáp án C
Câu 7: Cho hình chóp S.ABCD sở hữu lòng là hình vuông vắn cạnh a, SD = a√17/2 . Hình chiếu vuông góc H của đỉnh S lên trên bề mặt phẳng lì (ABCD) là trung điểm của cạnh AB. Gọi K là trung điểm của AD. Tính khoảng cách thân thuộc hai tuyến phố HK và (SBD) theo đuổi a
Lời giải:
+ Ta có: H và K theo thứ tự là trung điểm của AB và AD nên HK là lối khoảng của tam giác ABD
⇒ HK // BD ⇒ HK // (SBD)
⇒ d(HK; (SBD)) = d(H, (SBD))
Kẻ HI ⊥ BD và HJ ⊥ SI
Chọn đáp án C
Câu 8: Cho hình chóp S.ABCD sở hữu lòng ABCD là hình thoi cạnh a và ∠ABC = 60° Hai mặt mày phẳng lì (SAC) và (SBD) nằm trong vuông góc với lòng, góc thân thuộc nhị mặt mày phẳng lì (SAB) và (ABCD) vì như thế 30°. Khoảng cơ hội thân thuộc hai tuyến phố trực tiếp CD và (SAB) theo đuổi a bằng:
Lời giải:
Gọi O là gửi gắm điểm của AC và BD
Kẻ: OI ⊥ AB; OH ⊥ SI
+ Do CD // AB nên CD // (SAB)
⇒ d(CD, (SAB)) = d(C; (SAB)) = 2d( O; (SAB))
Ta có: AB ⊥ SO , AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH
Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH
Mà tam giác Ngân Hàng Á Châu ACB cân nặng bên trên B sở hữu ∠ABC = 60° nên tam giác ABC đều
⇒ OC = (1/2)AC = (1/2)AB = a/2 .
+ xét tam giác OAB có:
Chọn đáp án B
Câu 9: Cho hình chóp tứ giác đều S.ABCD sở hữu lối cao SO = 2, mặt mày mặt phù hợp với mặt mày lòng một góc 60°. Khi cơ khoảng cách thân thuộc hai tuyến phố trực tiếp AB và (SCD) bằng
Lời giải:
+ Gọi I là trung điểm của CD . Ta có:
⇒ ((SCD), (ABCD)) = (OI, SI) = 60°
+ Ta có: AB // CD nên AB // (SCD)
⇒ d(AB, (SCD)) = d(A, ( SCD)) = 2.d(O, (SCD))
+ Trong mp (SOI) , gọi H là hình chiếu vuông góc của O lên SI
+ Tam giác SOI vuông bên trên O, sở hữu lối cao OH nên
Do đó: d(AB; (SCD)) = 2d(O; (SCD)) = 2.OH = 2.1 = 2
Chọn B
Săn SALE shopee mon 9:
- Đồ sử dụng học hành giá rất mềm
- Sữa chăm sóc thể Vaseline chỉ rộng lớn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
ĐỀ THI, GIÁO ÁN, GIA SƯ DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài bác giảng powerpoint, đề đua giành riêng cho nghề giáo và gia sư giành riêng cho cha mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài tương hỗ ĐK : 084 283 45 85
Đã sở hữu tiện ích VietJack bên trên điện thoại cảm ứng thông minh, giải bài bác luyện SGK, SBT Soạn văn, Văn kiểu mẫu, Thi online, Bài giảng....miễn phí. Tải ngay lập tức phần mềm bên trên Android và iOS.
Nhóm học hành facebook free mang lại teen 2k5: fb.com/groups/hoctap2k5/
Theo dõi Shop chúng tôi free bên trên social facebook và youtube:
Nếu thấy hoặc, hãy khích lệ và share nhé! Các phản hồi ko phù phù hợp với nội quy phản hồi trang web có khả năng sẽ bị cấm phản hồi vĩnh viễn.
Bình luận