cộng lượng giác

Tổng ăn ý những công thức lượng giác vừa đủ nhất người sử dụng vô cả lịch trình toán lớp 9, 10, 11, bao hàm những công thức lượng giác cơ phiên bản, công thức nhân, thay đổi tích trở nên cổng, lượng giác của những cung đặc biệt quan trọng, độ quý hiếm lượng giác của những góc đặc biệt quan trọng, những công thức nghiệm cơ phiên bản... Hãy nắm rõ những công thức này nhằm hoàn toàn có thể thực hiện những dạng bài bác tập luyện về lượng giác. Mời chúng ta tìm hiểu thêm.

Bạn đang xem: cộng lượng giác

Khái niệm tỉ con số giác của một góc nhọn

Lượng giác

Với:

  • sin : là tỉ số thân thiết cạnh đối và cạnh huyền của góc
  • cos : là tỉ số thân thiết cạnh kề và cạnh huyền của góc
  • tan : là tỉ số thân thiết cạnh đối và cạnh kề của góc
  • cot : là tỉ số thân thiết cạnh kề và cạnh đối của góc

Mẹo học tập nằm trong : Sin tới trường, Cos ko hư đốn, Tan liên minh, ,Cot kết đoàn

Công thức lượng giác cơ bản

1.\ \tan x=\frac{\sin x}{\cos x}

2.\ \cot x=\frac{\cos x}{\sin x}

3.\ \sin^2x+\cos^2x=1

4.\ \tan x.\cot x=1\left(x\ne k\frac{\pi}{2},\ k\ ∈\ Z\right)

5.\ 1+\tan^2x=\frac{1}{\cos^2x}\ \left(x\ne\frac{\pi}{2}+k\pi,\ k\ ∈\ Z\right)

6.\ 1+\cot^2x=\frac{1}{\sin^2x}\ \left(x\ne k\pi,\ k\ ∈\ Z\right)

Công thức cộng lượng giác

1. sin (a ± b) = sin a.cos b ± cos a.sin b

2. cos (a + b) = cos a.cos b - sin a.sin b

3. cos (a - b) = cos a.cos b + sin a.sin b

4.\ \tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan.\tan b}

5.\ \tan\left(a-b\right)=\frac{\tan a-\tan b}{1+\tan a.\tan b}

Mẹo lưu giữ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin lốt trừ. Tan thì tan nọ tan ê phân chia cho tới khuôn số 1 trừ tan tan.

Công thức những cung links bên trên lối tròn xoe lượng giác

Mẹo nhớ: cos đối, sin bù, phụ chéo cánh, tan rộng lớn kém cỏi π

Hai góc đối nhau:

  • cos (-x) = cos x
  • sin (-x) = -sin x
  • tan (-x) = -tan x
  • cot (-x) = -cot x

Hai góc bù nhau:

  • sin (π - x) = sin x
  • cos (π - x) = -cos x
  • tan (π - x) = -tan x
  • cot (π - x) = -cot x

Hai góc phụ nhau:

  • sin (π/2 - x) = cos x
  • cos (π/2 - x) = sin x
  • tan (π/2 - x) = cot x
  • cot (π/2 - x) = tan x

Hai góc rộng lớn kém cỏi π:

  • sin (π + x) = -sin x
  • cos (π + x) = -cos x
  • tan (π + x) = tan x
  • cot (π + x) = cot x

Hai góc rộng lớn kém cỏi π/2:

  • sin (π/2 + x) = cos x
  • cos (π/2 + x) = -sin x
  • tan (π/2 + x) = -cot x
  • cot (π/2 + x) = -tan x

Công thức nhân

Công thức nhân đôi:

Công thức nhân ba:

Công thức nhân bốn:

  • sin4a = 4.sina.cos3a - 4.cosa.sin3a
  • cos4a = 8.cos4a - 8.cos2a + 1
  • hoặc cos4a = 8.sin4a - 8.sin2a + 1

Công thức hạ bậc

Thực đi ra những công thức này đều được thay đổi đi ra kể từ công thức lượng giác cơ phiên bản, ví dụ như: sin2a=1 - cos2a = 1 - (cos2a + 1)/2 = (1 - cos2a)/2.

1.\ \sin^2a\ =\ \frac{1-\cos2a}{2}

2.\ \cos^2a=\frac{1+\cos2a}{2}

Xem thêm: soạn văn 8 bài tức cảnh pác bó

3.\ \sin^3a=\frac{3\sin a-\sin3a}{4}

4.\ \cos^3a=\frac{3\cos a+\cos3a}{4}

Công thức biến chuyển tổng trở nên tích

Mẹo nhớ: cos nằm trong cos bởi 2 cos cos, cos trừ cos bởi trừ 2 sin sin; sin nằm trong sin bởi 2 sin cos, sin trừ sin bởi 2 cos sin.

1.\ \cos a+\cos b=2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}

2.\ \cos a-\cos b=-2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}

3.\ \sin\ a+\sin b=2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}

4.\ \sin\ a-\sin b=2\cos\frac{a+b}{2}.\sin\frac{a-b}{2}

5.\ \tan a+\tan b=\frac{\sin\left(a+b\right)}{\cos a.\cos b}

6.\ \tan a-\tan b=\frac{\sin\left(a-b\right)}{\cos a.\cos b}

7.\ \sin a+\cos a=\sqrt{2}\sin\left(a+\frac{\pi}{4}\right)=\sqrt{2}\cos\left(a-\frac{\pi}{4}\right)

8.\ \sin a-\cos a=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)

9.\ \tan a+\cot a=\frac{2}{\sin2a}

10.\ \cot a-\tan a=2\cot2a

11.\ \sin^4a+\cos^4a=1-\frac{1}{2}\sin^22a=\frac{1}{4}\cos4a+\frac{3}{4}

12.\ \sin^6a+\cos^6a=1-\frac{3}{4}\sin^22a=\frac{3}{8}\cos4a+\frac{5}{8}

Công thức thay đổi tích trở nên tổng

1.\ \cos a.\cos b=\frac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right]2.\ \sin a.\sin b=-\frac{1}{2}\left[\cos\left(a+b\right)-\cos\left(a-b\right)\right]

3.\ \sin a.\cos b=-\frac{1}{2}\left[\sin\left(a+b\right)+\sin\left(a-b\right)\right]

Nghiệm phương trình lượng giác

Phương trình lượng giác cơ bản:

1.\;\sin a=\sin b\;\Leftrightarrow\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=\mathrm\pi-\mathrm b+\mathrm k2\mathrm\pi\end{array}(k\in Z)\right]

2.\;\cos a=\cos b\;\Leftrightarrow\;\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=-b+k2\mathrm\pi\end{array}(k\in Z)\right]

3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)

4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)

Phương trình lượng giác vô tình huống quánh biệt:

  • sin a = 0 ⇔ a = kπ; (k ∈ Z)
  • sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
  • sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
  • cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
  • cos a = 1 ⇔ a = k2π; (k ∈ Z)
  • cos a = -1 ⇔ a = π + k2π; (k ∈ Z)

9. Dấu của những độ quý hiếm lượng giác

Góc phần tư sốIIIIIIIV
Giá trị lượng giác
sin x++--
cos x+--+
tan x+-+-
cot x+-+-

Bảng độ quý hiếm lượng giác một vài góc quánh biệt

Tỉ con số giác của 2 góc phụ nhau. ( α + β = 90°)

sin α = cos β cos α = sin β

tan α = cot β cot α = tan β

Bảng tỉ số của những góc quánh biệt

 Bảng độ quý hiếm lượng giác một vài góc quánh biệt

Công thức lượng giác té sung

Biểu biểu diễn công thức theo gót t=\frac{\tan a}{2}  

1.\ \sin a=\frac{2t}{1+t^2}\ \ \ \ \ \ \ \ \ \ \ \ 2.\ \cos a=\frac{1-t^2}{1+t^2}

3.\ \tan\ a=\frac{2t}{1-t^2}\ \ \ \ \ \ \ \ \ \ 4.\ \cot a=\frac{1-t^2}{2t}

Xem thêm: đại bộ phận dân cư liên bang nga tập trung ở

  • Các công thức đạo hàm và đạo nồng độ giác vừa đủ nhất