Bạn đang xem: bay hang dang thuc
Những hằng đẳng thức xứng đáng nhớ có thể quen thuộc gì với chúng ta . Hôm ni Kiến tiếp tục thưa kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và ở đầu cuối là hiệu nhì lập phương. Các các bạn nằm trong tìm hiểu thêm nhé.
1. Bình phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.
b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.
Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta với x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là những biểu thức tùy ý, tao có: ( A - B )2 = A2 - 2AB + B2.
3. Hiệu nhì bình phương
Với A, B là những biểu thức tùy ý, tao có: A2 - B2 = ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, tao có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.
Hướng dẫn:
a) Ta có: ( 2x - 1 )3
= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13
= 8x3 - 12x2 + 6x - 1
b) Ta với : x3- 3x2y + 3xy2- y3
= ( x )3 - 3.x2.nó + 3.x. y2 - y3
= ( x - nó )3
6. Tổng nhì lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu hụt của hiệu A - B.
Ví dụ:
a) Tính 33+ 43.
b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.
Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.
7. Hiệu nhì lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Xem thêm: ngữ văn 6 tập 2
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu hụt của tổng A + B.
Ví dụ:
a) Tính 63- 43.
b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương
Hướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta với : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài tập luyện tự động luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.
Hướng dẫn:
a) sít dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.
( a - b )( a + b ) = a2 - b2.
Khi tê liệt tao với ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x= .
b) sít dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi tê liệt tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=
Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
- 2x2+ 4xy B. – 8y2+ 4xy
- - 8y2 D. – 6y2+ 2xy
Hướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
A = -8y2 + 4xy
- Hãy ghi nhớ nó nhé
Những hằng đẳng thức xứng đáng nhớ bên trên rất rất cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy phân tích và ghi ghi nhớ nó nhé. Những đẳng thức tê liệt hùn tất cả chúng ta xử lý những việc dễ dàng và khó khăn một cơ hội đơn giản, chúng ta nên thực hiện đi làm việc lại nhằm bạn dạng thân thiết hoàn toàn có thể áp dụng chất lượng tốt rộng lớn. Chúc chúng ta thành công xuất sắc và chuyên cần bên trên con phố tiếp thu kiến thức. Hẹn chúng ta ở những bài xích tiếp theo
Xem thêm: thành phần xuất thân của giai cấp công nhân việt nam chủ yếu từ
Bình luận